3.9.38 \(\int \frac {\sec ^2(c+d x) (B \sec (c+d x)+C \sec ^2(c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx\) [838]

Optimal. Leaf size=329 \[ \frac {2 (a-b) \sqrt {a+b} \left (10 a b B-8 a^2 C-9 b^2 C\right ) \cot (c+d x) E\left (\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^4 d}+\frac {2 \sqrt {a+b} \left (b^2 (5 B-9 C)-8 a^2 C+2 a b (5 B+C)\right ) \cot (c+d x) F\left (\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^3 d}+\frac {2 (5 b B-4 a C) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 b^2 d}+\frac {2 C \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{5 b d} \]

[Out]

2/15*(a-b)*(10*B*a*b-8*C*a^2-9*C*b^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1
/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^4/d+2/15*(b^2*(5*B-9*C)-8*a^
2*C+2*a*b*(5*B+C))*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b
*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^3/d+2/15*(5*B*b-4*C*a)*(a+b*sec(d*x+c))^(1/2)*t
an(d*x+c)/b^2/d+2/5*C*sec(d*x+c)*(a+b*sec(d*x+c))^(1/2)*tan(d*x+c)/b/d

________________________________________________________________________________________

Rubi [A]
time = 0.48, antiderivative size = 329, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {4157, 4118, 4167, 4090, 3917, 4089} \begin {gather*} \frac {2 (a-b) \sqrt {a+b} \left (-8 a^2 C+10 a b B-9 b^2 C\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{15 b^4 d}+\frac {2 \sqrt {a+b} \left (-8 a^2 C+2 a b (5 B+C)+b^2 (5 B-9 C)\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{15 b^3 d}+\frac {2 (5 b B-4 a C) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{15 b^2 d}+\frac {2 C \tan (c+d x) \sec (c+d x) \sqrt {a+b \sec (c+d x)}}{5 b d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]^2*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(2*(a - b)*Sqrt[a + b]*(10*a*b*B - 8*a^2*C - 9*b^2*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/S
qrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(1
5*b^4*d) + (2*Sqrt[a + b]*(b^2*(5*B - 9*C) - 8*a^2*C + 2*a*b*(5*B + C))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a +
 b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*
x]))/(a - b))])/(15*b^3*d) + (2*(5*b*B - 4*a*C)*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(15*b^2*d) + (2*C*Sec[c
 + d*x]*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(5*b*d)

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4090

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[Csc[e + f*x]*((1 +
 Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 4118

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-B)*d^2*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^(n - 2)/
(b*f*(m + n))), x] + Dist[d^2/(b*(m + n)), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 2)*Simp[a*B*(n - 2
) + B*b*(m + n - 1)*Csc[e + f*x] + (A*b*(m + n) - a*B*(n - 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e
, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[n, 1] && NeQ[m + n, 0] &&  !IGtQ[m, 1]

Rule 4157

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(
x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Dist[1/b^2, Int[(a + b*Csc[e + f*x])
^(m + 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 4167

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_
.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m
 + 2))), x] + Dist[1/(b*(m + 2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*A*(m + 2) + b*C*(m + 1) + (b*
B*(m + 2) - a*C)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\sec ^2(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx &=\int \frac {\sec ^3(c+d x) (B+C \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=\frac {2 C \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{5 b d}+\frac {2 \int \frac {\sec (c+d x) \left (a C+\frac {3}{2} b C \sec (c+d x)+\frac {1}{2} (5 b B-4 a C) \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{5 b}\\ &=\frac {2 (5 b B-4 a C) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 b^2 d}+\frac {2 C \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{5 b d}+\frac {4 \int \frac {\sec (c+d x) \left (\frac {1}{4} b (5 b B+2 a C)-\frac {1}{4} \left (10 a b B-8 a^2 C-9 b^2 C\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{15 b^2}\\ &=\frac {2 (5 b B-4 a C) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 b^2 d}+\frac {2 C \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{5 b d}-\frac {\left (10 a b B-8 a^2 C-9 b^2 C\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{15 b^2}+\frac {\left (b^2 (5 B-9 C)-8 a^2 C+2 a b (5 B+C)\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{15 b^2}\\ &=\frac {2 (a-b) \sqrt {a+b} \left (10 a b B-8 a^2 C-9 b^2 C\right ) \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^4 d}+\frac {2 \sqrt {a+b} \left (b^2 (5 B-9 C)-8 a^2 C+2 a b (5 B+C)\right ) \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^3 d}+\frac {2 (5 b B-4 a C) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 b^2 d}+\frac {2 C \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{5 b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(3000\) vs. \(2(329)=658\).
time = 21.50, size = 3000, normalized size = 9.12 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sec[c + d*x]^2*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

((b + a*Cos[c + d*x])*Sec[c + d*x]*((2*(-10*a*b*B + 8*a^2*C + 9*b^2*C)*Sin[c + d*x])/(15*b^3) + (2*Sec[c + d*x
]*(5*b*B*Sin[c + d*x] - 4*a*C*Sin[c + d*x]))/(15*b^2) + (2*C*Sec[c + d*x]*Tan[c + d*x])/(5*b)))/(d*Sqrt[a + b*
Sec[c + d*x]]) - (2*((2*a*B)/(3*b*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - (3*C)/(5*Sqrt[b + a*Cos[c + d
*x]]*Sqrt[Sec[c + d*x]]) - (8*a^2*C)/(15*b^2*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) + (B*Sqrt[Sec[c + d*
x]])/(3*Sqrt[b + a*Cos[c + d*x]]) + (2*a^2*B*Sqrt[Sec[c + d*x]])/(3*b^2*Sqrt[b + a*Cos[c + d*x]]) - (8*a^3*C*S
qrt[Sec[c + d*x]])/(15*b^3*Sqrt[b + a*Cos[c + d*x]]) - (7*a*C*Sqrt[Sec[c + d*x]])/(15*b*Sqrt[b + a*Cos[c + d*x
]]) + (2*a^2*B*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(3*b^2*Sqrt[b + a*Cos[c + d*x]]) - (8*a^3*C*Cos[2*(c + d*x
)]*Sqrt[Sec[c + d*x]])/(15*b^3*Sqrt[b + a*Cos[c + d*x]]) - (3*a*C*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(5*b*Sq
rt[b + a*Cos[c + d*x]]))*Sqrt[Sec[c + d*x]]*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(2*(a + b)*(-10*a*b*B + 8*a^
2*C + 9*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*E
llipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*b*(8*a^2*C + 2*a*b*(-5*B + C) + b^2*(5*B + 9*C))*Sqrt[
Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[
(c + d*x)/2]], (a - b)/(a + b)] + (-10*a*b*B + 8*a^2*C + 9*b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d
*x)/2]^2*Tan[(c + d*x)/2]))/(15*b^3*d*Sqrt[Sec[(c + d*x)/2]^2]*Sqrt[a + b*Sec[c + d*x]]*(-1/15*(a*Sqrt[Cos[(c
+ d*x)/2]^2*Sec[c + d*x]]*Sin[c + d*x]*(2*(a + b)*(-10*a*b*B + 8*a^2*C + 9*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c
 + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/
(a + b)] - 2*b*(8*a^2*C + 2*a*b*(-5*B + C) + b^2*(5*B + 9*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b +
a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + (-10*a*b*
B + 8*a^2*C + 9*b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(b^3*(b + a*Cos
[c + d*x])^(3/2)*Sqrt[Sec[(c + d*x)/2]^2]) + (Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Tan[(c + d*x)/2]*(2*(a + b
)*(-10*a*b*B + 8*a^2*C + 9*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1
+ Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*b*(8*a^2*C + 2*a*b*(-5*B + C) + b^2
*(5*B + 9*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*El
lipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + (-10*a*b*B + 8*a^2*C + 9*b^2*C)*Cos[c + d*x]*(b + a*Cos[c
 + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(15*b^3*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]) - (2
*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(((-10*a*b*B + 8*a^2*C + 9*b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec
[(c + d*x)/2]^4)/2 + ((a + b)*(-10*a*b*B + 8*a^2*C + 9*b^2*C)*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c +
d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c + d*x])^2
 - Sin[c + d*x]/(1 + Cos[c + d*x])))/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])] - (b*(8*a^2*C + 2*a*b*(-5*B + C) +
b^2*(5*B + 9*C))*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (
a - b)/(a + b)]*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c + d*x])^2 - Sin[c + d*x]/(1 + Cos[c + d*x])))/Sqrt[Cos
[c + d*x]/(1 + Cos[c + d*x])] + ((a + b)*(-10*a*b*B + 8*a^2*C + 9*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]
*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*(-((a*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x]))) + ((b
+ a*Cos[c + d*x])*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x])^2)))/Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c
 + d*x]))] - (b*(8*a^2*C + 2*a*b*(-5*B + C) + b^2*(5*B + 9*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*EllipticF
[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*(-((a*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x]))) + ((b + a*Cos[c
+ d*x])*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x])^2)))/Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]
 - a*(-10*a*b*B + 8*a^2*C + 9*b^2*C)*Cos[c + d*x]*Sec[(c + d*x)/2]^2*Sin[c + d*x]*Tan[(c + d*x)/2] - (-10*a*b*
B + 8*a^2*C + 9*b^2*C)*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Sin[c + d*x]*Tan[(c + d*x)/2] + (-10*a*b*B + 8*
a^2*C + 9*b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]^2 - (b*(8*a^2*C + 2*a*b
*(-5*B + C) + b^2*(5*B + 9*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + C
os[c + d*x]))]*Sec[(c + d*x)/2]^2)/(Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[1 - ((a - b)*Tan[(c + d*x)/2]^2)/(a + b)
]) + ((a + b)*(-10*a*b*B + 8*a^2*C + 9*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/
((a + b)*(1 + Cos[c + d*x]))]*Sec[(c + d*x)/2]^2*Sqrt[1 - ((a - b)*Tan[(c + d*x)/2]^2)/(a + b)])/Sqrt[1 - Tan[
(c + d*x)/2]^2]))/(15*b^3*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]) - ((2*(a + b)*(-10*a*b*B + 8*a^2*
C + 9*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x...

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(2499\) vs. \(2(299)=598\).
time = 0.34, size = 2500, normalized size = 7.60

method result size
default \(\text {Expression too large to display}\) \(2500\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/15/d*(1+cos(d*x+c))^2*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))^2*(-5*B*cos(d*x+c)^2*a*b^2+10*B*co
s(d*x+c)^4*a^2*b-5*B*cos(d*x+c)^4*a*b^2-10*B*cos(d*x+c)^3*a^2*b+10*B*cos(d*x+c)^3*a*b^2+3*C*b^3+8*C*sin(d*x+c)
*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+co
s(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^3+9*C*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((
b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^3-9*C*
sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*Ellipt
icF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^3+8*C*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c))
)^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2)
)*a^3+9*C*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1
/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^3-9*C*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+c
os(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a
+b))^(1/2))*b^3-5*B*cos(d*x+c)^3*b^3+5*B*cos(d*x+c)*b^3-8*C*cos(d*x+c)^4*a^3+8*C*cos(d*x+c)^3*a^3-9*C*cos(d*x+
c)^3*b^3+6*C*cos(d*x+c)^2*b^3+4*C*cos(d*x+c)^4*a^2*b-9*C*cos(d*x+c)^4*a*b^2-8*C*cos(d*x+c)^3*a^2*b+10*C*cos(d*
x+c)^3*a*b^2+4*C*cos(d*x+c)^2*a^2*b-C*cos(d*x+c)*a*b^2-10*B*sin(d*x+c)*cos(d*x+c)^3*EllipticE((-1+cos(d*x+c))/
sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2
)*a^2*b-10*B*sin(d*x+c)*cos(d*x+c)^3*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+
cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^2+10*B*sin(d*x+c)*cos(d*x+c)^3*EllipticF(
(-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x
+c))/(a+b))^(1/2)*a*b^2-10*B*sin(d*x+c)*cos(d*x+c)^2*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))
*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^2*b-10*B*sin(d*x+c)*cos(d*x
+c)^2*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*
x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^2+10*B*sin(d*x+c)*cos(d*x+c)^2*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-
b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^2-5*B*sin
(d*x+c)*cos(d*x+c)^3*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/
2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*b^3-5*B*sin(d*x+c)*cos(d*x+c)^2*EllipticF((-1+cos(d*x+c))/sin
(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*b
^3+8*C*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)
*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b+9*C*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+co
s(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+
b))^(1/2))*a*b^2-8*C*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c)
)/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b-2*C*sin(d*x+c)*cos(d*x+c)^3*(co
s(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x
+c),((a-b)/(a+b))^(1/2))*a*b^2+8*C*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))
/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b+9*C*sin(d*x+c)*co
s(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d
*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2-8*C*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b
+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b-2*C
*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*Ellip
ticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2)/(b+a*cos(d*x+c))/cos(d*x+c)^2/sin(d*x+c)^5/b^3

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*sec(d*x + c)^2/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^4 + B*sec(d*x + c)^3)/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (B + C \sec {\left (c + d x \right )}\right ) \sec ^{3}{\left (c + d x \right )}}{\sqrt {a + b \sec {\left (c + d x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2*(B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral((B + C*sec(c + d*x))*sec(c + d*x)**3/sqrt(a + b*sec(c + d*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*sec(d*x + c)^2/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\cos \left (c+d\,x\right )}^2\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + b/cos(c + d*x))^(1/2)),x)

[Out]

int((B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + b/cos(c + d*x))^(1/2)), x)

________________________________________________________________________________________